A Probability Click Tracking Model Analysis of Web Search Results

نویسندگان

  • Yujiu Yang
  • Xinyi Shu
  • Wenhuang Liu
چکیده

User click behaviors reflect his preference in Web search processing objectively, and it is very important to give a proper interpretation of user click for improving search results. Previous click models explore the relationship between user examines and latent clicks web document obtained by search result page via multiple-click model, such as the independent click model(ICM) or the dependent click model(DCM),which the examining-next probability only depends on the current click. However, user examination on a search result page is a continuous and relevant procedure. In this paper, we attempt to explore the historical clicked data using a probability click tracking model(PCTM). In our approach, the examine-next probability is decided by the click variables of each clicked result. We evaluate the proposed model on a real-world data set obtained from a commercial search engine. The experiment results illustrate that PCTM can achieve the competitive performance compared with the existing click models under standard metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ensemble Click Model for Web Document Ranking

Annually, web search engine providers spend more and more money on documents ranking in search engines result pages (SERP). Click models provide advantageous information for ranking documents in SERPs through modeling interactions among users and search engines. Here, three modules are employed to create a hybrid click model; the first module is a PGM-based click model, the second module in a d...

متن کامل

A New Hybrid Method for Web Pages Ranking in Search Engines

There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...

متن کامل

Incorporating Non-sequential interactions into Click Models

Click-through information is considered as a valuable source of users’ implicit relevance feedback. As user behavior is usually influenced by a number of factors such as position, presentation style and site reputation, researchers have proposed a variety of assumptions (i.e. click models) to generate a reasonable estimation of result relevance. The construction of click models usually follow s...

متن کامل

Modeling Attractiveness and Multiple Clicks in Sponsored Search Results

Click models are an important tool for leveraging user feedback, and are used by commercial search engines for surfacing relevant search results. However, existing click models are lacking in two aspects. First, they do not share information across search results when computing attractiveness. Second, they assume that users interact with the search results sequentially. Based on our analysis of...

متن کامل

Missing Click History in Sponsored Search: A Generative Modeling Solution

A fundamental problem in sponsored search advertising is the estimation of probability of click for ads displayed in response to search queries. The historical click-through rate (CTR) is one of the most important predictors of the click, and extracted at multiple resolutions of the query-ad hierarchy. However, the new ads do not have any click history, and even the existing ads might miss hist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010